
AD-A019 385 

^ 

MANPOWER PLANNING MODELS.  IV.  SYNTHESIS OF 
CROSS-SECTIONAL AND LONGITUDINAL MODELS 

R. C. Grinold, et al 

Naval Postgraduate School 
Monterey , Cal i form" a 

November 1975 

DISTRIBUTED BY: 

mn 
National Technical Information Service 
U. S. DEPARTMENT  OF  COMMERCE 

i 

i&rt':i*Jil.T.^U..v.r *r.v.AM^äwjCltiiUk:»*ai^. ^-'',-'—■"-■ ''''^■.':^iKJ.^JiA..,U*^lP*Mk&X^  ■ ■  -i-   •   iM-'—/-'■-■■-r-r  il M"'-rv"!---^-- •- -■■•■   - ■■•■ - ■ -T''---^--'nir'V--'-1<-^>iA>-'tiit'r--'--V^l-lrt-^ ff*'. 



Hg&nRnpM w!5BriB3»J<!SWWrW,W^^^ 
^^f;a^w!Tr^CT^y?^W^ 

622^9 
o. • 

X) 
TO 

NPS55Mt75111 

NAVAL POSTGRADUATE I 
Monterey, California 

> •* 

ooi 

MANPOWER     PLANNING MODELS  -   IV 

SYNTHESIS OF  CPOSS-SECTIONAL  AND  LONGITUDINAL MODELS 

by 

R.   C.   Grlnold 

and 

K.   T.  Marshall 

November  1975 

Approved  for public release;  distribution unlimited, 

Prepared for- 

Navy Personnel R&D Center 
San Diego,  CA    92152 

NATIONAL TECHNICAL 
INFORMATION   SERVICE 

US   L..|.l-""""    n'   O   mm,.,;,, 
Sp.^-jU.ld.  VA    ?3151 

., ■ ■ i Mi'BW^iiH^fiVitt li.n.,..ll>i&i.rnliilnL.-v—-^--^—' "   <.u..rt«n.lmMmtvMm^mmrMmmmkmmmM^^ 



p^wi'ijij^wiw^ro^giCTgy!^^ 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

Rear Admiral Ishair. '.i-idc. 
Superintendent 

Jack R. Borsting 
Provost 

This work was supported in part by the Navy Personnel R&D Center, San Diep.o, 
Office of Naval Research and the Manpower Planning Division (MPI20) of the Marine 
Corps. 

Reproduction of all or part of this report is authorized. 

Prepared by: 

leale  T.  Marshall       ^^ 

R.   C.   Grinold 

Reviewed   byr 

'id  A.   Scrftady,   Chairman 
Department  of  Operations  Research 

and  administrativ^ /ciences 

Released by; 

Robert Possum 
Dean of Research 

ii 

u,^.-^-.j*.*i*,*J^iU*.'*jia,l&Xi'tat ^d^frmrate-fori«äYW<i>Wti»'i^i»ittW 



pfwwH^^wpipajWwwwtwiwwii^-w 
l^illl^^t^Hi^ltiifJ^gJB^W^Jf^y^'WI^^Vqf 

UNCLASSIFIED 
SECURI1"«-   CLASSIFICATION Of  THIS PAGE CWTi«! Data Ent.r.d) 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORF. rr.MPLETING FORM 

REPORT   NUMBER 

NPS55Mt75111 

I?    GOVT   ACCESSION  NO 3      RECIPIENT--,   " A T A L D G   NUMBER 

4      TITLE   'anrl Subllll«) 

Manpower Planning Models - IV 
Synthesis of Cross-Sectional and Longitudinal 
Mod els 

5      TYPF   OF   HEPORl   »   Pfo:0: 

echnical   Report 

VERED 

6  PERFORMING ORG REPORT NUMBER 

7  AUTMORC«; 

R. C. Grinold 
K. T. Marshall 

CONT»ACT  OR  GRANT   NUMBER'», 

9      PERFORMING  OROANIZA-ION   NAME   ANO   ADDRESS 

Naval Postgraduate School 
Monterey, CA  93940 

It!      PROGRAM  ELEMENT   PROJECT,   TASK 
AREA  «   «QR^   UNI'   N.JMBERS 

X'F-F-Zil-FVVPeOOOR 

H      CONTROLLING  OFFICE  NAME   AND  ADDRESS 

Navy Personnel R&D Center 
San Diego, CA  92152 

12       BFP')~'    DA'-p 

'■■nvn.-Miei   LB25 
'3     NjMFJf nor  PAGES 

U     MONITORING   AGENCY   NAME  S   ADDRESSr/( dllltrmnt Irnm  Canlrolhne Ottlr-x: 15     SECuP'^Y CL AS',      of  rh(«  r»porf; 

Ciw 1, ss i; i eu 

h;. "f CLASSIFICATION  DOWNGRADING 
JCH t DULE 

18     DISTRIBUTION  STATEMENT rol thlt Rmporlj 

Approved for public release; distribution unlimited. 

17.    DISTRIBUTION   STATEMENT (ol Ih» mbtlrmcl «ci(»r«d/n Block JO,   "  dlllmfni  Irom ««port. 

18      SUPPLEMENTARYNOTES 

'9.    rv E Y  WORDS /Conr/nu» on rnvmraf tidm  II nmcmammiy «nd Idmntlty by  block numbmr,. 

Manpower 
Planning 
Models 
Flow 

Markov  Chains 

20      ABSTRACT (Conllnum on rrnvwi* tldm II nmcmmtmrr and Idmntlty by Mor* numbar; 

This  report   is  the  fourth  in a   series   on  Manpower  Planning Models.      Its 
main  purpose  is   to compare  the  cross-sectional  and   longitudinal models 
described   in   the  second and   third  reports,   point  out   their   similarities 
and differences,   and  present  a   theoretical  comparison   "r   the   two   types 
of  models. 

0D    1  JAN  73    1^73 EDITION OF   1  NOV 88 IS OBSOLETE 
S/N   OIOJ-01«- 6«01   I . 

UNCLASSIFIED 
SECUHITV CLASSIFICATION OF THIS PAGE (Whmn Dmlm Knlmtmd) 

rN-dmimtiw-m'-Wi^^--'"^ 



'■v il.|i^H^»II^JllW!^WJl<'au.-^w.>»>r'.>T^^^ 

TABLE OF CONTENTS 

1. Introduction 

2. Relations Between Cross-Sectional and Longitudinal Models 

3. Two-Characteristic Cross-Sectional Models 

4. Serai-Markov Flow Models 

5. A Theoretical Comparison 

6. Not^s and Comments 

Page 

1 

3 

9 

15 

26 

40 

111 

i/ 

e 

iliiHtfltflWlfiill''.ilni«<tm.itil.iir(r i M. i ir, ■ 



IV.  SYNTHESIS OF CROSS-SECTIONAL AND LONGITUDINAL MODELS 

1.  Intiroduct Ion ■ 

This chapter examines the relationships between the cross-sectional 

models developed in Chapter II and the longitudinal models developed in 

Chapter III.  The longitudinal models allow more general flow processes f.o be 

modelled, and any cross-sectional model is a special case of a longitudinal 

model.  Although the longitudinal models are more general, they normally have 

much greater data requirements and thus are mere difficult to implement in 

cases where the model coefficients are estimated from historical data.  There- 

tore w^ seek some compromise between the basic longitudinal and cross sectional 

models. 

The chapter begins with a brief secti TI demonstrating some relationships 

between the two models.  Sections 3 and 4 present hybrid models that use cross- 

sectional data yet 'lave some longitudinal characteristics.  Section 3 describes 

two characteristic models.  These large cross-sectional models have a special 

structure which allows for simple calculations and modest data requirements. 

Section 4 considers semi-Markov models which are a straight forward extension 

of the cross-sectional model.  We find that the special structure of the semi- 

Markov model yields some useful approximatlens.  Finally, section 5 is devoted 

to a theoretical analysis of the longitudinal model and thf; analysis of errors 

caused  by using a best approximating cross-sectional model. 

In this chapter we modify our previous notational conventions.  When it 

simplifies the exposition we assume that the longitudinal matrices P(u)  will 

have index  u  for all  u  greater than or equal to zero.  In previous chapters 

we assumed that  P(u) = 0  for u > M.  This case is still Included of course, 

but allowing u to range over all positive values often simplifies the limits 

on summations in complicated expressions. We also use the probabilistic 
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interpretations of  the  cross-sectional  and   longitudinal  models.     With  the 

exception  of   section   5  all   the arguments  could  be  reworded   in  terms  of   fractional 

flows.     However,   the  use   of   the probabilistic  nomenclature  eases  »-he discussion 

and   simplifies  some  of   the  arguments. 

/**LM&si*yi*a*L*iliitiXt'i «üjfraai^titMifütfrliipifrttan Hr^Wirt^f^tM^A^i^ftit^M^ 
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2.  Relations Between Cross-Sectional and LonRltudlnal Models. 

This section contains an analysis of the relations between cross-sectional 

and longitudinal models.  It starts with the introduction of an expanded classi- 

fication scheme which connects the two models.  This leads us to examine several 

practical considerations in class expansion.  A detailed theoretical analysis of 

model comparisoii is given later in section 5. 

In order to use the cross-sectional models described in Chapter II one must 

first select a suitable manpower classification scheme.  In general one selects 

the simplest scheme that will answer specific interesting questions, and stay 

consistent with available data.  It may be helpful to expand the classification 

scheme to develop a more, realistic model of the flow process. 

The cross-sectional data found in most organizations often contains limited 

longitudinal information.,  For example, in a faculty promotion model such as that 

described in II.8, the data on individual faculty members probably contains, 

In addition to current rank, the length of time in the organization, or length 

of time in the current rank.  This data often indicates how a simple classifi- 

cation scheme, such as rank, can be expanded to more realistLcally model personnel 

flows.  We exploit this idea below, but first we see how a general longitudinal 

model can be rearranged and thought of as a cross sectional model. 

Recall from the general longitudinal model in III.2 that the input flows 

on chains 1 through K in period  t  arc given by the K-vector g(t), and the 

maximum number of periods spent in the system is M + 1.  Suppose that we define 

a class to be a combination of chain-type and period of entry.  Then we have 

K ^ (M + 1)  classes.  Let the "stocks" at time  t  be given by the K * (M + i)- 

vector of past chain input flows  [g(t), g(t-l),...,g(t-M)],  and Q be a 

"•-'■'"■"-■■•■ -"■•'--"-■•■^■■•■■'''■'■'■•"'''^MfitiM ..w^ak^i^ii^MtlküMia^awti^.'.^^ 
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K  x   (M +  I)     square matrix  with  zeros  except   for   l's  on   the   K-tli   lower  dingonnl 

If     Ö     represents  a     K   ^   K     zero  matrix,   and     I     a     K   >■   K     identity matrix, 

then  for    M =   3, 

Q  = 

0       0       0 0 

10       0 0 

0       10 0 

o     o     r o 

Let  f(t)  be a  K ■ (M + l)-vector whose first  K elements are  g(t)  and the 

remainder all zeros.  Then 

s(t + 1) = Qs(t) + f(t) 

and we have a cross-sectional formulation.  However, the modul is simply a 

reorganization of the general longitudinal model.  We now L^vk «it some particular 

cases of more interest. 

Suppose  P(0)  is a given  (N ■■■'  K)  matrix and  P(u + 1) = QP(u)v  where 

0  is an  N ■■ N  matrix.  Then, for all  u,  P(u + 1) = 0   PfO),  and using 

equar ion { ** )   in 1 IT. 2 , 

(1) 

s(t) = P(0 g(t) + Q  ^  QU 1P(0)g(t - u) 
u=l 

Qs.t - 1) I- P(0)g(t) . 

This   is  a  cross-sectional  model  with     f(t)   =  P(0)g(t). 

A  converse   to   this  result   is  also  true.     Suppose     s(t)   - P(0)g(t)   =  Qs(t   -  I) 

for  any  values  of     g(t   - u),   u   >  !•     Than we must  have     P(u + 1)   =  Q      P(0). 

To  see  this  set     g(t   - u)   =  0,     except  when    u   =  k.     Then     s(t   - k)  = P(ü)g(t   - k) 

and     s(t)   = P(k)g(t   -  k)   =  Q  P(0)g(t   -  k).     Since    g(t   - k)      is  arbitrary, 

we must   have    P(k)   =  Q P(0).     Thus  we  have  shown  the  longitudinal  and  cro.^s- 

sectional  models are   identical   if  and  only   if     f(t)   =  P(0)g(t)     and     P(u  +  1)   = 

QU+1P(0)     for all    u  ^ 0. 

miMm**mmmimmmimitm* «lt.ni>i»i>*.inftiiirliiliilliltiilliftlittl^lMitt^MII^^ 
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Problem 1:  If P(u + 1) = Q  P(0),  and the maximum number of periods in the 

system is M + 1,  what limitations does this place on the structure of Q? 
■ 

Returning to the expansion of the classification scheme suppose that 

we have a longitudinal model with N classes, and maximum time in system equal 

to  (M + 1) periods.  A class is now redefined to be a combination of an original 

class i and a length of completed service u.  Thus there are N x (M + 1) 

new classes,  and the stocks in these classes are given by the vector  [s,(t;u)], 

for i = 1,2,...,N,  and  u = 0,1,2,...,M.  Consider first the special case 

where the number of original classes N is equal to the number of chains K. 

Thus the matrices P(u)  in the longitudinal model are each square. 

Define q,,(u)  as the fraction of those in original class i with u 

periods of completed service, who move to original class j  in one period.  Then 

for each k = 1,2,...,K, 

N 

or 

Pjk(u + ^ = J^ji^lk^ ' 

P(u + 1) = Q(u)P(u) 

If  P(u) has an inverse, tnen 

-1 
Q(u) = P(u + l)P(u)   for u = 0,1,....M - 1 

In  t.his case,   the  cross-sectional model is 

s(t + 1;0) = g(t + 1)   , 

s(t  + 1;   u + 1)   =  Q(u)s(t;u) u =  0,1,...,M  -  1   . 

Example  1: 

In the one class one chain model  (K = N = 1)  we have q(u) = p(u + l)/p(u) 

If  p(0) = 1,  and p(u)  is nonincreasing, then 0 <,  q(u) < 1 .  The numbers 

iiiiiNiiiiwwiiiiiivr-^-"-' - - ■ 
,i.^,-.;^»te,.>;,-..iu-. ...,K...»..■...:' TiMrili«rirtiliiii»M-<Tiainiiil(ltfAiilfMitl<a** 

..\t.il.V.J..ui.,-...,.-.-,i»^tt. 
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q(u)  are commonly called continuation rates,     since q(u)  gives the fraction 

of people who continue in the system for at least  (u + 1)  periods, given that 

t'.iev have been in the system u  periods. B 

More generally, when N ^ K,  we can choose  Q(u)  so that  Q(u)P(u) 

approximates P(u + 1).  This can be accomplished if, for each j = 1,2,...,N, 

we solve the quadratic minimization problem; 

K 
Minimize  )_ v 

k=l 
where 

Vk = J1 V^ik^ - P.ik(u+ 1) • 

The matrix Q(u)  which solves this problem is given by 

Q(u) = P(u + l)P(u)+ , 

where  P(u)   is the generalized inverse of  P(u).  Hov/ever, there is no guarantee 

0(u)  will be nonnegative with column sums less than one. 

We close this section wi'..h a practical discussion of how a model with 

longitudinal features can be modified to seem more like a cross-sectional model. 

It seems best to establish t1is point by example. 

Example 2:  Consider the three class cross-sectional faculty model in example 

1 of II. 3.  Given an individual enters class 1, the individual can move eventually 

to class 0 or 2.  The expected duration in class 1 is 
1-q If we ask for 

11 
the expected duration conditioned on moving to class 0 (is not given tenure) 

the answer is still 
1-q 

The same answer will be obtained if we ask for the 
11 

expected lifetime in class 1 given eventual promotion to class 2 (Is given tenure). 

The Markov model treats a visit to class 1 as a two-stage process, as is illustrated 

in Figure IV.1. 

iMMfliiwUMMfMiiiMI mmm*mm MijiflfiMMiMiitMHMmHiaiMaMMMMMtoaMM^^ 
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1 - q 
11 

Figure IV.1.  Illustration of Markov Model in Example 2. 

At the first node, the individual either stays in class 1 or not and the 

expected number of periods at class 1 is independent of the reclassification process, 

Suppose we know that the lifetimes of individuals in clans 1 are dependent 

on their eventual status.  Let  T  be the expected lifetime in class 1 given an 

eventual move to class 0, and T^  be the expected lifetime in class 1 given an 

eventual move to class ?..  We can construct a four class cross-sectional model that 

has these characteristics: 

3. 

4. 

New Class 

Nontenure who leave 

Nontenure who move to tenure 

Tenure 

Retired 

Old Class 

1 _ Nontenure 

2. Tenure 

3. Retired 

The new system will be distinguished by a 

s(t) = Qs(t - 1) + f(t) 

We assume that 

Ummm^m Wf i.tt^M^MWtiriWiitiiwii»it'if ii ri ^•t^t^ii)iii^iiMMtä^tttt/t^^ UWäiMflMItiK 
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w. 

and 

Q = 

£i(t) ■ ^t: fi<t' • 1  ^21 

'21 
f9(t)   =      x        ^ 2 w1+q21    1 

T0 

T2-l 

MO . 

o 

0 

0 

0 

i22 

0 

^23 

^23 
i 

This expanded model makes the distinction wc dr'-Hr" ;-i LJr.e spent .'n nontenure, 

and it also tells us the fraction of professors in nontenure taat eventually acquire 

tenure, namely s2(t)/(s1(t) + i2(t)). |J 

^*...^*^.^^.^,^^^^**^-^^,^^^ 
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3.  Two-Characteristic Cross-Sectional Models, 

This section examines cross-sectional models with two dimensional state spaces 

using the probabilistic interpretation presented in III.9.  Assumptions on per- 

missible flows between states lead to a special structure, and this in turn allows 

simple calculation of quantities such as projected inventories and lifetime in each 

classification. 

The key to the special structure is the organization cf the classification 

scheme.  The classes (or states) are defined in terms of two characteristics, 

(i,j), where the first characteristic (henceforth FC),  i,  runs over the indices 

1 through N.  The range of the second characteristic (henceforth SC), j, depends 

on the FC.  Let S    be the set of all possible classes, and 5(i) = {j|(i,j)e5} 

be the set of possible SC's given that the FC is i.  Let  |5(i)|  be the 

number of elements in the set S(i). 

At time t an individual's class can be described by a random variable X(t). 

The cross-sectional assumption assures us that knowledge of X(t)  is sufficient 

for prediction of X(t + 1), X(t + 2),  etc., without knowledge of X(t - 1), 

X(t - 2),  etc. To obtain the öpecial structure of the two characteristic model 

we impose liiaitations of the allowable transitions between classes.  If the current 

FC is i,  the only allowable moves in one period are 

(i)  to classes with FC  still equal to  i, 

or  (ii)  to classes with FC equal to i + 1. 

Example 3:  Let the FC reprr sent length of time in system and SC the grade of 

an individual.  Consider tne four grade student example with grades j = 1,2,3,4, 

for freshman, sophomore, junior and senior respectively.  Clearly in each time 

period the first characteristic increases by 1. Let the maximum time in the system 

be 5 years (1 year = 1 time period), and let the sets of classes be 

,-,   ■  „-, .-■ mmmvmmm   ^mimmmmämmmtmmim^_    -^   
mmiiammmmmmimmmäm 
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i 5(1) 

1 {1} 

2 {1.2} 

3 (2,3; 

4 (3,A} 

5 (4,5} 

This is an example of the  'LOS/GRADE' model.  Note that N = 3,  and \s\   = 9 

Problem 2:  List all the chains which would be present if example 3 

as a longitudinal model. 
were re-formulated 

Since the two-characteristic model is of th 

be defined by a transition 

e cross-sectional type it must 

matrix  Q,  where  Q  is square with each dimension 

equal to  5 .  We consider the two types of allowable flow separately, 

(i) No change in FC i. 

Define for each j  and m in S(±), 

qraj(i) = P[X(t + 1) = (i,m)|x(t) = (i,j)] , 

and let Q(i)  be the  |5(I)j  by  |5(i)|  matrix with  (m,j)-th element equal to 

(ii)  Change from FC i to FC  (1+1). 

Define for each m in 5(i + 1)  and each j  in S(i), 

P .(i) = P[X(t + 1) = (i + l,m)jX(t) = (i.j)] , 

and let P(i)  be the  |S(i + 1) | x |s(i) |  matrix with  (.j)-^ element equal 

-'■"-■■■ .-.■■^...■■■.,^^.^.^.^^iw.;«^^^i^^  ^.;i.-.J.^^.u..^_..^.W^L^.^.^^^ 



nMHMWmWBPgBBWWBgPW BlliWJgjWreBBjWBWWilCT^^ 

11 

The    Q    matrix  is given  by   (fov    N =  4) 

(2) Q = 

Q(l) 0 0 0 

P(l) Q(2) 0 0 

0 P(2) Q(3) 0 

0 Ü P(3) Q(4) 

where the  0's  are matrices with all elements equal to zero. 

Example 4:  Continuation of example 3. 

Since the LOS must increase by 1 each year all the Q(i) matrices are zero 

matrices.  Thus  Q has the structure 

0 0 0 0 0 o 0 0 0 

x 0 0 0 0 0 0 0 0 

x 0 0 0 0 0 0 0 0 

0 X X 0 0 0 0 0 0 

0 o X 0 0 0 0 0 0 

0 0 0 X X 0 0 0 0 

0 0 0 o X 0 0 0 0 

0 0 0 0 0 X X 0 0 

0 0 0 0 0 0 0 0 0 

where x  indicates a (possibly) non-zero element. The partitioning is included 

to help the reader identify the P(i) matrices. 

Example 5:  Re-formulation of example 3. 

Suppose that the FC represents the grade of an individual in a system where 

no demotions can occur and in which a person cannot advance more than one grade 

per year.  Let  SC represent the time spent in the particular grade.  This is 

called the 'GRADE/TIME-IN-GRADE* model.  Let the grades be 1) freshman, 2) sophomore. 

jifAWMfaMlli1^'' 'l"''1 """'«l**' [ViiTiWtillifiiMffll 
liA.- ■....;■ itfijjBjitagak ^gutismmm ^rn^iTir-ii^iiiiiw^ 
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3) junior and 4) senior, and let the maximum time in each grade be 2 years, 

we have 

i S(i) 

1 (1,2} 

2 {1,2} 

3 {1.2} 

4 {1,2} 

Thus 

Note that  N = 4  and 8.  Now the Q matrii: has the structure. 

Q = 

0 0 0 0 0 0 0 0 

Ä 0 0 0 0 0 o 0 

V X 0 0 0 0 0 0 

0 0 X 0 0 0 o 0 

0 0 x X 0 0 0 0 

0 0 0 o X 0 0 0 

0 0 0 0 X X 0 0 

0 0 0 0 0 0 X 0 

where again x  indicates a(possibly) non-zero element. 

Example 6:  Re-formulation "t  example 3. 

Suppose that the  FC represents the grade of an individual (as in example 5) 

n a system with no demotions and no double or multiple promotions per period. 

Let the SC represent the time in the system, or length of service (LOS).  This 

is called the 'GRADE/LOS' model.  Let the grades be 1) freshman, 2) sophomore, 

3) junior and 4) senior, and let the maximum time in the system be 5 years, with 

.„....^^.....^^i**. ^.-^.w .■^^^^^iViiifiiiiiiriiiiM^ — 
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i S(i) 

1 (1,2) 

2 {2,3} 

3 {3,4} 

4 {4,5} 

Note that  N = A  and  I.TJ = 
Now the  Q matrix has the structu re 

Q = 

0       0 0       0       0   '   0       0 

0   ;   0       0    '   0       0.0       0 
_T_______T___ 
0,0       010       0      0       0 

0       x   1   x 
—  —  -  T  _ 

0   {   0       0      0       0 
r  

0       Ox       0,0       0   '   0       0 

0       0   1  0      xix       0   i   0       0 
 t 7 t  
0       0|0       Ox       0,0       0 

0       0,0       O'O       x   [   x       0 

- _i ■ 

All the above examples display the special structure of Q which is depicted 

in (2).  Recall from Chapter II that many applications of the cross-sectional 

model require calculation of the inverse (I-Q)   which we called D.  Although 

the Q matrix in the two-characteristic model is often quite large, it is easy 

to calculate D in terms of th.. Inverses of the smaller submatrices.  Define 

D(i) = (I-QCi))-1  for each  FC  i.  Then (for the case N = 4), 

D(l) 

D(2)P(1)D(1) 
D= | 

D(3)P(2)D(2)P(1)D(1) 

D(4)P(3)D(3)P(2)D{2)P(1)D(1) 

0 0 0 

D(2) 0 0 

D(3)P(2)D(2) D(3) 0 

D(A)P(3)D(3)P(2)D(2) D(4)P(3)D(3) D(4) 

imim*mmmimmimm**iiMik*mmimit ■v.^^.,,.»^.^^^^:..-j1-iMaTiI1i7nTr1r-l,lli 
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Thus D  is coapletely determined by the matrices D(i) , ,1 = 1,..,,N,  and  P(i) , 

i = 1,2,....N - 1. 

Computations in forecasting are considerably reduced by taking advantage of the 

special structure.  Let  s.(t) be the vector of stocks at time t with FC i. 

Thus si(t)  is a  |5(i)|  vector.  Then the stocks at  (t + 1) are given by 

si(t + 1) = Q(i)Bi(t) + P(i-l)si_i(t) + f0i(t + I),  1 = 2....N , 

where  ^Qi^  is the vect-or of input flows in period  t wir'.i FC i.  The total 

stocks at  (t + 1)  with FC  i is found by summin£ the elements of  s (t + 1). 

Problem 3:  Let b  (i)  be the probability that, given the current state is 

(i,j),  the state entered on leaving 5(i)  is  (i + l,m).  Let  B(i) = [b .(i)]. 

Show that  B(i) = P(i)U(i) . 

Problem 4: hit    h   .(k;i)  be ehe probability that, given . e current state is 

(i,j),  the i-.tate entered when S(k)  is entered : i  (k,m).  Let B(k;i) = [b .(kji)], 
mJ 

an     |S(k)|     by     |S(i)|     matrix.     Show that     B(i)  « B(i + l;i),  and  tLat   for  k  >  i+1 

B(k;i)   -  B(k -  l)B(k-2)   ...   B(i). 

^^^'^■-"'-^iiinifimiit'ffii[r""ftirtiiiMnnrillil«nf«i»ft Bttati .;^.i'rf.i. iiiiHiTirTiTrr--'-^-:,-/ 



15 

J 

4. Seai-Markov Flow Models. 

A simple longitudinal model that retains some of a cross-sectional model's 

useful properties is the semi~rkov model. This section presents the general 

ideas behind such a aodel and indicates how some useful quantities can be calculated 

or approximated without coapletely specifying the flow process. We use terainology 

froa probability theory to present the model, but the reader should recall that it 

is not necessary to view the model in a probabilistic sense. Although it can be 

viewed as a deterainistic flow process we find the exposition easier and smoother 

using Markov chain terminology. 

Consider a system with N classes of manpower. When an individual enters 

class i we say he commences a visit t o class i. Let qji(u) be the probability 

that a visit to class i lasts u periou ~ and finishes with transition to state 

j. As in earlier chapters class 0 is interpreted as outside the system, 

and since a visit to any class is assumed to be at least 1 period in length, 

qji (().) - o. 
The probabilities qji(u), i = 1,2, ... ,N, j • 0,1,2, ••• ,H, u • 1,2, ••• , 

form t he basic data of the model, and from these the following interes~ing 

quantities can be calculated: 

(i) the probability that class j will follow class i, 

qji = I qji(u) • 
u•l 

(ii) the expected length of a visit to class i, given j is the next 

class visited, 

(iii) the expected length of a visit to class i, 



ipiS'SSSOTSSHJp*!«??^^ !f5Fw.i^: W^^WW^WJ^*
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(iv)  the probability of soending more than  u  periods in class  i, 

N 
\M   =   I I     q  (v) , 

v=u+l j=0  J1 

(v)  the variance in the length of a visit to class  i,  given that the 

next class visited is  j, 

0ii = Ji (u - V)2ciii(u)/qii ' 
(vi)  the variance in the length of a visit to class  i, 

2 9 

u=l j=0      1       i1 

Problem 5:  Show that 

U. =  I  h (u) , 
u=0  1 

and 

2 .  2 
o, + ^ - ui = 2 I     uh^u) 

u=0 

Example 7:  Consider a student enrollment model with the following 5 states: 

1. Freshman 

2. Sophomore 

3. Juniors 

A. Seniors 

5. Degree winners (graduates). 

Assume that the only transitions possible are from i to either  {i + 1) or 0, 

and that no state can be held for more than three periods.  The basic data are given 

by (blanks indicate zeros): 

..-,  'y, s:^ :.v-J.,:^if»h.^  s ; -_ _._  ifi'rtMfri .. ..-^^wi'jkti^ 
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I- — 

q01(U) 

q21
(u) 

q02(u) 

q.,0(u) 

q03(u) 

q«(u) 

q04(u) 

q54(u) 

q05(") I 

0.15 

0.65 

0.10 

0.7 0 

0.15 

0.75 

0.05 

0.90 

i.00 

0.10 

0.10 

0.05 

0.10 

0.05 

0.05 

0.05 

0.01 

0.04 

By using  (i)  it is «asy to calculate the  6 * 5  matrix of probabilities 

[q .].  These are: 

\ i 

0 ,   0.2 

] 

5   - 0.16    0.20    0.05    1.00 

2    0.75 

3 

4 

5 

0.SA 

0.80 

0.95 

Notice that the elements in each column sum to 1.00. 

^BiftfiiiiiiilMliflrtatMli^MMirtMrtiiiyiWM^Ml^liit^itf ^—^^ja^^^^^^^l^j^ 
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By using (ii) the expected values  [)-».,]  are 

N  i 

;  Ü 

i 2 3 4 5 

1.40 l.AA 1.25 1.00 1.00 

1 

2 1.1 3 

3 
1 

1.21 

18 

1.06 

-j.  
1.05 

From this table we seo that, given a student will become a junior, the 

expected time he spends as n sophomore is 1.21 periods.  Given he is to leave 

after being a Sophomore, the expected time spent as a sophomore is 1.A4 periods. 

7 
By using   (v)   the  variances   [oT.,]   are 

r 

r 
0    ;       0.24 

i   j 

2    '       0.12 
i 

LL_ 

0.37 0.19 

0.26 

0.06 

0.05 

^ *JjiJ=ii^\Ai!:**\.iMfi i-Ja^a^.J-^^i*^t:*£ii^&^ jiiiiTTirriiii'-ri»illirir»1-^iiiriMifi1^y""inti-Viiiitr^i»  i^u^^^m^ä^ääiäMäiiM^^ 
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The semi-Markov model can be viewtd as a cross-sectional model with a two- 

charactei-ist5c state space (the reader should verity that the converse is not 

true).  Suppose that a new state is defined to be a combination of an original 

state  i and the number of periods spent in that state, u.  Then an individual 

in state  (i,u)  moves next either to state  (j,0), with probability 

q^(u + l)/h (u),  or to state  (i,u + i) (remains in the same "original state") 

with probability h (u + l)/h (u). 

Example 8;  Continuation of example 7. 

In this student example there are 10 states with a cross-sectional model 

Q matrix given by 

\ 
From 

To\ 
\ 

(1,0) 

(1,0) (1,1) (2,0) (2,1) (2,2) (3,0) (3,1) (4.0) (4,1) (5.0) 

(1,1) 0.20 

(2,0) 0.65 0.50 

(2,1) 0.20 • 

(2,2) 0.25 • 

(3,0) 0.70 0.50 0.80 

(3,1) 0.10 

(4.0) 0. 7 5 0.30 

(4.1) 0.05 

(5,0) 0.90 1.00 

Problem 6: In terms of the GRADE/TIME-TN-GRADE model described in Section 3, 

partition the matrix in example 8 to find the Q(l) and P(i) matrices, and 

find the inverse matrix D = (I-Q)  .  Interpret the result. 

UjgamaaMri tJfcltfeklftyftri! i^-fcifei liiiiiiiiiiittBiii^wi^ MMtttfaaiMj||iaaBMBBg|IBIi urn 
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The semi-Markov model can also be viewed as a longitudinal model, but in 

order to do this we must identify the chains.  Chain k in the longitudinal 

interpretation corresponds  to state k in the semi-Markov formulation.  An 

individual is appointed in chain k if and only if he enters the system in 

state k. Recall from III.5 that  Pik(u)  is the probability that an individual 

who enters on chain k in some period  t will be in class i at time t + u. 

By using conditional probability arguments, when k is different from i 

we obtain from the semi-Markov assumptions. 

Pik(u) = 0 if  u = 0 , 

u  N 
=   I     I   Pii(<>-v)qik(v) if u i 1 

v=l j=l   J       J 

For the case  i = k we have 

Pi±M  = l if u = 0 , 

u  N 
=  hAu)   +    I       I     p..(u-v)q  (v) ,  if  u i 1 . 

v=l j = l  J     J1 

Now let  H(u)  be an N * N matrix with off-diagonal elements equal to zero, 

andi-thdiagonal element equal to h (u). 

Also let  P(u)  and  Q(u)  be N * N matrices with  (j,i)-th elements equal 

to p  (u)  and q  (u)  respectively.  Then the above equations can be written 

in the matrix form 

(3) P(u) = H(u) + I    P(u - v)Q(v),   u > 0 . 
v=0 

Since Q(u) contains the basic data of the semi-Markov model, and since H(u) 

is calculated from this data using (iv), the longitudinal model matrices P(u) 

are completely determined by solving (3). 

Mt» i AnmmmmMtmmrmmk iniMiirnlL'ililtWtHiftlllill^''1*''""'' ■'' riWttntlttiMnuitftiMtiirtt»^ 
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Example 9:     Continuation of example 8. 

For the student example trie values of p  (u)  for i x 1,2,3,4,5,  and 

u = 0,1,2,...,9 are given by (to 2 significant figures) 

\ J 

i\ 

1 

0 1 2         3         4         5         6         7        8 9 

1 0. 20 

2 0. 65 0.23  0.05  0.01 

3 0.46 0.18  0.05 0.01 

4 0.34  0.14  0.02 

5 0.31 0.13  0.04  0.01 

Blank entries represent zero's or numbers less than .005. 

Problem 7:  Based on example 9 above. 

a) Given that an individual enters as a freshman, what is the probability 

of graduation. 

b) Given that the entering freshman eventually graduates, what are the 

mean and variance of the number of years spent as a student? 

c) Given that the entering freshman drops out, what is the mean and variance 

of the number of years spent as a student? 

If all the basic data (the q. .(u^s)  are known, equation (3) shows that 

the longitudinal model matrices P(u)  can be calculated and all the results 

of Chapter III follow.  Often the detailed transition probabilities are not known, 

2 
and only estimates of the means and variances y   and o   can be obtained, 

together with the q  's.  Even with this limited data it is often possible to 

obtain approximate results for the equilibrium behavior of the system. 
CO GO OO 

Recall that L = ^ P(u), and let K = £ H(u),  and Q = £ Q(u).  The 
u=0 u=0 u=0 

equations in (3) can be written out as 

igMilW^iWiillit^ 
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P(0)  = H(0) 

P(l)   = H(l)   + P(0)Q(1) 

P(2)   -   ri(2)  + P(1)Q(1)  + P(0)Q(2) 

P(3)  = H(3)  + P(2)Q(1)  + P(1)Q(2)  + P(0)Q(3) 

etc 

Summing these equations and using the above definiti ons we get 

L = H + LQ , 

or 

L = H(I-Q) -1 

Now H is the sum of diagonal matrices and is itself a diagonal matrix with 

(i,i)-th element equal to y   (see problem 5). Let D = (I-Q)  .  Then d., 

is the expected number of visits to state i given that the system was entered 

in state k.  Thus 

Äik = ^ik ' 

where I        is the expected number of periods spent in class 1, given the system 

was entered on chain k.  If a stationary vector g gives the chain inflows In 

each period the steady state stocks will be 

s = Lg , 

Example 10:  Continuation of example 9. 

For the data given in the student example. 

■fiiiritimiiiM^iMniiir^^ 
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D = 

] .00 

0.75 L. ,00 

0.63 0. ,84 1.00 

0.50 0. ,67 0.80 1.00 

0.48 0 .64 0.76 0.95 1.00 

and 

1.2 0 

1.25 

1.10 

1 .05 

1. 20 

0. 9 4 1 .25 

0 . 6 9 0. 92 1.10 

0 . 5 "i 0.7 J Ü . 8 4 1 .05 

0 . ■'. 8 0.64 0.7 6 0.95 

i.o; 

L = 

1.00 

Problem 8:  Based un t-XcintpLi, 10. 

Assume that you enter fhis student group as a junior, 

a) how many periods du you expect to attend? 

b) what is the probability that you will graduate? 

Problem 9:  Show that, given you enter clajs k,  the probability of ever reaching 

class  i  is d., /d, , . 
ik kk □ 

To continue with the steady state approximations consider next the case where 

input flows are growing geometrically at rate  (0-1).  Thus  g(t) = 6 g and from 

equation 7 in 1 1 I 'i I he si o. ks in period  t it   large)  are given by 
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where 

Now let  6  =5,  and define 

and 

8(t) = eLL(e)g , 

L(9) = I     6 UP(u) 
u=0 

P(6) = I    6uP(u) , 
u=0 

CO 

H(ö) = l     ÖUH(U) , 
u-0 

CO 

Q(6) = I     6UQ(u) . 
u=0 

By multiplying the u-th matrix equation in (3) by 6  and summing over u we get 

P(6) = H(6) + P(<S)Q(6) 

Thus P(6) = L(0) 

= H(6)(I - Q(6)) -1 

For  <5 close to 1 the basic approximation formulas (Appendix 1) can be used 

for the elements of H(<S) and Q(5).  From these 

2 

and 

where 

V^ = qji6   (1 + 2 ^^ 

^(6) = [1 - 6^(1 +| a2
i)]/a - &)   , 

a = log 6,6=1/6. 

Example 11:  Continuation of example 10. 

Let 6 = 1.03, so that  6 = 0.97, Then 

irilfeitiiWf^iiiiit^^^^ MWMiT       .a: ivtr»ffftiWiilirrteiii«iTiiHi 
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D(6) = 

1.00 

0.72 1.00 

0.59 0.81 1.00 

0.45 0.63 0.77 1.00 

0.42 0.58 0.71 0.92 1.00 

H(ö) 

1.19 

1.24 

1.10 

1.05 

1.00 

and 

P(6) = 

1.19 

0.90 1.24 

0.64 0.88 1.10 

0.48 0.66 0.81 1.05 

0.42 0.58 0.71 0.92 1.00 

I 

The actual values of P(6)  are very close to these approximations. 1 
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5. A Theoretical Comparison. 

The stochastic interpretations of the longitudinal and cross-sectional 

models developed In III.5 and II.1 are used in this section In a theoretical 

comparison of the two models.  Some data on student enrollment -s used to 

illustrate the results. 

Throughout this section we assume the longitudinal model is a valid descrip- 

tion of the system's lav? of motion.  Our intention is to construct a good cross- 

sectional approximation to that model and then examine the quality of the 

approximation.  The actual approximation is time dependent and also depends on 

past Inflows.  Moreover, it depends on data that is usually not available in 

a longitudinal model.  Nevertheless, the approximation does help us to describe 

the rational limits of approximating a longitudinal model with a cross-sectional 

model. 

Recall that S(t)  is an N-dim ".nsional random vector, where S, (t)  is a random 

variable which gives the stocks in class i at time t. The expected stocks 

in each class are given by the elements of s(t) = E[S(t)]. For a (posjibly 

nonstationary) cross-sectional model the conditional expected value of ' S(t + 1) 

given both the realized values of stocks S(t)  at time t and the (exper.ted) 

inflows  fflCt + 1)  in period t + 1,  is easily derived from equation (2) in 

II. 2.  Let the superscript c represent the "cross-sectional model. ' Then 

(4) El-[S(t + l)|S(t) = x] = Q(t)x '- f0(t + 1) 

Note that we use Q(t)  to indicate that the transition matrix can be non-stationary 

from period to period. 

The basic longitudinal moael gives the unconditional expected values of 

S(t + 1).  From equation (4) in III.2. 

:..,     -   ■ ■'■■■-   ■'•'  ■■•• 

....-.„.„.^to^-   -   '■iiiHlliMrli-iinFuW ~>.m. .,.-*-„ iM.   ...t.,,^ ■:.■■,,,.■■\.^,1 
...^■,,.II.,.,.-J —^.,.j-.»,.---.»-^--i-■■—''■'.! -'■>.:.»,ll"»i«i 
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(5) E[S(t + 1)] = I    P(u)g(t + 1 - u) 
u=Q 

To compare the longitudinal and cross-sectional models we must derive an 

expression for the conditional expectation E [S(t v l)|S(t) = x],  where the 

superscript  £  denotes "longitudinal model."  In order to determine this expression 

some assumptions must be made on individual behavior and some results of probability 

theory exploited. 

The longitudinal model stipulates that each individual in the system is subject 

to a stochastic law of motion that depends only on the individual's chain and 

elapsed time in the system.  In particular, the movement of any given individual 

is independent of the movement of others. 

With each Individual who enters the system we associate a counting random 

variable.  Let 

Z J (t - u,t) =1  if individual j, who entered in chain k in period  t - u 

is in class i at time t, 

= 0 otherwise. 

Recall that gi(u)  is the total number who enter in chain k in period u.  Then 

the stock in class  i at time t  is the random variable 

K   - Sk(t-U) 

(6) V0 =111       Z{jk ^ " ".t 1     k=l u=0 j=l   t,K 

The central limit theorem of probability theory states that under our assump- 

tions S^(t)  has approximately a normal distribution.  Also the elements of the 

N-vector S(t)  are jointly normally distributed, and the elements of the 2N-vector 

(S(t),S(t + 1))  are also jointly normally distributed. 

Now let b  = Cov[S (t),S.(t)], where Cov  indicates covariance.  Also 

let  c  = Cov[S (t),S.(t + 1)],  The matrices  B  and  C, with (i,j)-th elements 

equal to b  and c   respectively, are N * N  covariance matrices.  From the theory of 

multivariate normal distributions we can now write down the expression for the 

^^^.:.^..-i-i^Wr..^^^'^*^^v^,*^--Vvu...^v.i..i'-..tv-^jj^1>.li, t^-tft&f&mtb*^-******^**^ 
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(7)  E£[S(t+l)|S(t)«x] = C(t)B'1(t)x + P(0)g(t+1) + [s( 

This complicated expression reduces to 
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-1 
t+l)-(C(t)B  (t)s(t)+P(0)g(t+l))] 

El[S(t + l)|s(t) = x] = 8(t + 1) + C(t)B 1(t)[x - s(t)] , 

so that when x = s(t), the forecast reduces to s(t + 1). 

Before we can compare the forecasts obtained in (4) and (7) it is necessary 

to analyse the covariance matrices B(t)  and C(t).  First consider B(t).  Usirg 

the expression Xii  (6) with the definition of covariance one can show that 

hii(t)   =  Si(t) ' ^  ^ Pik(u)8k(l: ~  U) ' u=0 k.=l 

K 

J      u=0 k=l ■J 

Now let M(t)  be an N x N matrix with off-diagonal elements equal to 0 and 

m  (t) = s (t).  Let G(t - u)  be a similar K x K matrix but with g..(t - u) = 

g.(t - u).  Then the matrix B(t)  can be written as 

(8) 
B(t) = M(t) - I    P(u)G(t - u)P' (u) 

u=0 

Recall that  the prime  indicates matrix  transposition. 

We now turn to analyzing the matrix C(t). Since c (t) is a covariance 

term between stocks in class i at time t and stocks in class j at t + 1 

it is necessary to know the joint distribution of the class of an individual at 

both    t    and     t + 1. 

Define 

,k , ,   _ , fIn class i at  t anc 
flj(u) =Pr0Mln class j at t+T 

Later in this section these joint probabilities are discussed in detail and related 

to results in III.10.  Continuing with our analysis of C(t) it follows from 

itered chain k in 
ariod t + 1 - u 

a». „.-,.■- ■■ :....,-^,/.Wi.l^u.l--~ ^--.^..^.--..i.»».^.^.^.^^--.-^-..^^-^^-.^^.^^^ 
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this definition  of     f     (u)     that,   if     f,.(t + 1)     is  the expected  flow from 

class     i     to  class     j     in  period     t + 1, 

K 
fij(t + !>   =       I       I     C.Cu +  l)g,(t  - u) 

J u=0  k=l     ^ k 

Using   (6)   and  the  definition of  covarlance   it   can  be  shown  that 

CO 

(9) C(t)   = F'a   <- 1)   -    I    P   (u + l)G(t  - u)P(u)   , 
u=0 

where F(t+1)  is the N x N matrix of expected flows [f  (t + 1)].  Next, recall 

that  q..(;)  is the fracti  of those individuals in class i at time t who 

move to class j  at  t + 1.  Thus 

(10) 

or in matrix  form. 

q.-Ct)   =   f^Ct + l)/s.(t)   , 

(10) -1 Q(t)   =  F'U  + 1)M -"-(t)   . 

Now clearly  the   stocks  in  class j     at  time     t  + 1    are given by     the  sum 

of all  flows  into  class     j     in period t + 1.     Thus 

N 
s^t + 1)   =     I fij(t + 1)  +  f0   (t + 1)   . 

1=1 

Using (10) and substituting for the input chain fl Lows, 

SjCt + 1) = I    q  (t)s (t) + I     p  (0)g (t+ 1) 
1=1 J k=l J    k- 

In matrix form this becomes 

(ID s(t + 1) = Q(t)s(t) + P(0)g(t + 1) 

iinii'ilriii'iiii'frr- '■■"-''■'"■'"^■'-''"^'■-''^•'"-'-^^'^•"-^^^ ■<lrfllrvllll^n1r[Hf^VlM,lllr^l^l^a^^-■■■'^^^—■'-"^- ■' - ■ i- n  •.■ i ■-"■--. -■,-■;■- 
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Equation  (11)   could have been obtained  from  (4)   directly,   but  by  fallacious 

reasoning.     Recall  that  L,:.-r  assumption is  that   the  longitudinal model truly 

describes movement  throu^a the  system, whereas   (4)   is  simply a cross-sectional 

representation which approximates  the true model. 

By subtracting   (7)   from  (4)   and  substituting   (11)   one  finds that 

-1 
(12) EC[s(t+l)|s(t)=x]   -  Ee[S(t+l)|s(t)=x]   =   [C(t)B'1(t)-Q(t)](s(t)-x)   . 

Equation (12) g.ives the one-period forecasting error caused by using the 

cross-oection model in place of the longitudinal model.  By taking expec- 

tations on S(t) we see that "on the average" the expected error is zero in every 

class. 

In order to say more about the size of the discrepancy between the two models 

it is necessary to know something about the magnitude of the entries in the matrix 

[C(t)p"1(t) - Q(t)].  Let 

and 

D(t) = I    P'(u + l)G(t - u)P(u) 
u=0 

H(t) = I    P(u)G(t - u)P,(u) . 
u=0 

Then from (8) and (9) we have 

B(t) - M(t) - H(t) 

and 

C(t) = F'(t + 1) - D(t) . 

From these equations together with (10) it can be shown that 

(13) C(t)B"1(t) - Q(t) = [Q(t)H(t) - D(t)]B"1(t) 

^..^.^^-■^•"^WttittniiiWiigrti^ " '  ■    " ■.:■.■.....■ ^^ _^  
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Problem 10: 

a)  Verify equation (13). 

B)  Show that if  P(u + 1) = Q(t)P(u)  for all  u > 0,  then C(t)B"1(t) - 

Q(t) = 0 and the two models coincide. a 

To investigate (13) further we consider the one class, one chain model with 

constant input.  In this case all matrices and vectors reduce to scalars, 

g(t) = g  for all  t,  and  P(u) = p(u).  Moreover 

H = g  I P(u)  ,  s = M = g I    p(u) , 
u=0 u=0 

F = g I    p(u)  and  D = g  [  p(u)p(u + 1) . 
u=l u=0 

Let  A =  ^  p(u).  the expected lifetime of an individual in the system.  Then 
u=0 

(14) QH - D = f 
A I     p(u)   I     p(u + 1) - I     p(u + l)p(u) I  p(u) 

u>0      u>0 u>0 u>0 

The term in parenthesis in (14) is 

I     p(u)2(A - 1) - A I     p(u)p(u + 1) = A I     A(u + l)p(u) - I     p(u)2 , 
u>0 u>0 u>0 u>0 

where A(u + 1) = p(u) - p(u + 1). 

Interpreting p(u)  as the tail distribution of a non-negative random variable, 

say A for "lifetime,'' one can show that 

(15) 

and 

(16) 

I     P(u)[l - p(u)] = I     A(u) I     p(v) , 
u>0 u^O     v>u 

I     [A(u) + A(u + l)]p(u) = 1 
u>0 

Using (15) and (16) in (14) gives 

(17) QH - D = ^ I    A(u) 
u>0 

I    P(v) - (A)p(u) 
v>u 

iitiiMi*Mtif»f<lBiiillii*nmrlti ■..^..^^■^.-A^^.Hi,-.,.,^-......^.,..^^,^ 
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Let us assume now that the expected remaining lifetime of a person whose 

time in the system exceeds u  time periods is no more than the expected lifetime 

A  of a new input.  We say that people have "mean residual life" bounded above 

by the original mean life, and say that A has MRLA if 

I    ^\  £ A,  all u = 0,1,2,...  for which  p(u) > 0 . 
v>u P ; 

Note that equality holds in this equation for the geometric distribution.  Table 

IV.1 shows that in a particular case of students attending the University of 

California at Berkeley, (see Table 11.15 also) this assumption is valid. 

Under the MRLA assumption, from (17) we see that 

QH - D < 0 . 

-1, In th.^ stationary case  [QH - D]B """[s - xj  is independent of t 

Since B ^  is nonnegative, we have the following conclusions: 

If we assume  A  has MRLA, 

a) If x < s) the cross-sectional model under-estimates the value .of 

E?[S(t + D|S(t) = x]. 

b) If x > s,  the cross-sectional model over-estimates the value of 

E£[S(t + l)|S(t) = x]. 

Since S(t)  has a marginal normal distribution we can say more about the 

expected error in the one dimensional case.  The error is a normal random variable 

2 -1 
with zero mean, and variance equal to  (QH-D) B  (where these are all scalars). 

Thus we can say that with probability about .95 the error will lie in the interval 

(^B-1' |QH-D|, + 2B~  |QH-D|).  The length of this interval increases as the 

square root of g.  However,  s  the expected value of S(t)  increases as g. 

Thus the interval length divided by s, or the fractional error range, decreases 

w^~.;,.^..^.-,^mk--~'>uJMa^^--^-^^ ^■^l.--t,.v.-^.,-.,.i.^..^w>.^-»J„.^.W^^ 



ffaw^pii^.wP!PJiiii«ai> 

Lifetime 
(semesters) Pr[A>u]  = p(u) I P(u) I p(u)/p(v) 

u v>u vsru 

0 1.000 6.959 6.96 
1 0.972 5.959 6.14 
2 0.905 4.987 5.52 
3 0.756 4.082 5.42 
4 0.68A 3.326 4.86 
5 0.593 2.642 4.47 
6 0.562 2.049 3.65 
7 0.524 1.487 2.84 
8 0.498 .936 1.88 
9 0.199 .465 2.34 

10 0.130 .266 2.05 
11 0.050 .136 2.72 
12 0.036 .086 2.39 
13 0.017 .050 2.94 
14 0.015 .033 2.20 
15 0.011 .018 1.64 
16 0.007 .007 1.00 

Table  IV.1.     Mean Residual Life of Freshman Students Entering 
U.C. Berkeley in Fall Semester, 1955. 

as the square root of  g.  So as g increases, and hence s  Increases, the width 

of. the confidence interval of error increases much more slowly.  To illustrate 

thit> we use the lifetime distribution from Table IV. 1, and for various cohort 

sizes je  show how the interval length changes.  The results are given in Table 

IV.2.  It is clear from this table that even though the lifetime distribution 

differs considerably from a Markovian (geometric) distribution with the same 

mean, the confidence intervals on the forecasting en or are extremely small 

relative to the expected number in the system.  For comparison p(u) is drawn 

in Figure IV.1 together with a geometric distribution. 

^ftstMawkw^hiaitoWi^a^^ 
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1.0 

1955 UCB students (2126) 

Expected Lifetime X - 3.5 years 

1   2   3   4   5   6   7   8   9  10  11  12 13 14  15 16 

Semesters (u) 

Figure TV.l. Comparison ot  p(u)  for UCB Students with a Geometric Distribution. 
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Cohort Size 
g 

E[S] = s 
Confidence Interval 
for Forecast error 

1000 6,959 (-7,7) 

2000 13,918 (-10,10) 

3000 20,877 (-12,12) 

4000 27,836 (-14,14) 

Table IV.2. 95% Confidence Intervals for Various 
Cohort Sizes. 

Determination of  properties  of  the matrix in   (13)   for the multi-class, multi- 

chain case  is much more difficult  than  in the one-class,   one-chain case.    A 4-class, 

4-chain numerical example  is given which uses the student  enrollment data from 

Table   III.3,   and  assuming  constant   cohort  size  input. 

The  forecasting error given by   (12)  has a multivarjate normal distribution 

with mean    0    and  covariance matrix     (QH-D) (B    )' (QH-D) ' ,     Using the data given 

in Table III..3  for  freshmen,  sophomores,  junior and  seniors at  the University 

of  California,  Berkeley 1955-1969,   calculations were made assuming constant 

cohort  sizes of  3000  freshmen,   700  sophomores,   1300 juniors and  150 seniors entering 

each fall  semester.     These  figures are approximately what  the Berkeley campus had 

been experiencing  in its  fall new admissions. 

t* Vi 
Table  IV. 3 gives  the matrix    B,     whose     (j,i) element   is  the covariance of 

S   (t)     and    S   (t)   for some    t.     Also  included is    s,     the vector of expected 

stocks  in each class. 
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^^lass i 
Freshmen S ophomores Juniors Seniors 

Class j ^\ 

Freshmen 673 -4 54 -30 -10 

SoDhojjOres -454 1453 -380 -43 

Jun .ors -30 -380 2137 -535 

Seniors -10 -43 -535 2216 

Expected 
Values 

3868 3324 4687 3227 

Table IV.3. Covariance Mat rlx B for the 4-cl< ass example 

The variance of the number in each class increases as the class increases, 

and all classes are negatively correlated. 

Table IV.4 gives the matrix  (QH-F)B~ (QH-F)', which is the covariance 

matrix of the forecasting error.  It can be seen that these numbers are very 

small compared to the size of the predicted values, as was found in the single 

state case. 

^\Class i 
^\ Freshmen Sonhomores Juniors Seniors 

Class j  \ 

Freshmen 6.7 2.2 -22.4 -5.4 

Sophomores 2.2 1.0 -8.5 -2.7 

Juniors -22.4 -8.5 82.2 29.5 

Seniors -5.4 -2.7 29.5 41.8 

Table IV.4 .  C ovariance Matrix of Forecasting Error. 

wmßm 
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The matrix  (QH-D)B   is given in Table IV.5. 
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\Qla88 i 
x. Freshmen Sophomores Juniors Seniors 

Class jV 

Freshmen .068 .013 .002 .001 

Sophomores -.041 -.003 .003 .001 

Juniors .290 -.062 -.030 .029 

Seniors .040 -.046 -.125 .032 

Table IV. 5.  (QH-D) fT1  for the 4-Class Example. 

i a 

This is an example where  (QH-D)  is neither :-: nor  ^  0,  unlike the 

one-class, one-chain model. 

Even though movement through the system is far from that represented by a 

stationary cross-section model (i.e.,  P(u) 4  Q  for some Q), when constant cohort 

sizes are used the cross-sectional modtJ gives essentially the same prediction as 

the more complex cross-sectional model.  However, the longitudinal model is primarily 

formulated for forecasting under conditions of controlled input.  This is often the 

situation when policy changes are implemented, and under such conditions the sizes 

of cohorts is successive time periods can and do vary considerably.  For example, 

the freshmen cohorts in the fall quarters at Berkeley in the period 1966-1969 are 

shown in Table IV.6.  This was a period when total campus enrollment was controlled, 

and new students entered only to fill available room. 
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Date Cohort Size 

Fall 1966 

Fall 1967 

Fall 1968 

Fall 1969 

3,053 

3,303 

2,239 

1,883 

Table IV.6.  Freshmen Cohort Sizes at U.C. Berkeley 

One can see.   that, since  F(t)  and  s(t)  are both functions of previous 

cohort sizes (up to period  t), that the cross-sectional transition probabilities 

will change with time, and I. hat estimating them from crosa-sectional dat.i in two 

consecutive years will not: account for gross changes in cohort s^yes. 

We end this section with a hi  ief discussion of the ioint prooabi 1! :.ies  f..(u) 
ij 

and their connection with the flow parameters p , (u)  in II 1.10 (longitudinal 

conservation). 

First it is easy to see that if  u = 0, then  fn.(0) = p.. (0),  and for  i ^ 0, 

f..(0) = 0.  These relations follow directly from the definitions.  Next, since any 

k 
individual who leaves the systvra cannot return, for  j  and  u 2. 1  f , (u) = 0. 

Also, by looking at the flows into some state  j  in period  u  it fellows that 

Pik(u) =  I  fJ-Cu) 
2k i=0 t2 

Similarly,   by looking at   flows  out  of  some  state     i     in  period     (u  +  1) , 

N 

2=0 
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Thus the  {p  (u)}  are the marginals of the joint probabilities {f..(u)}.  In 

many applications the {f  (u)}  are hard to measure and it would be advantageous 

if they could be estimated from the {p , (u)} which are relatively easy to measure. 

In general the marginals do not determine the joint distributions. 

Problem 31; The longitudinal model would have serial independence if f.,(u + 1) = 

p., (u)p , (u -{- 1).  Since people who leave cannot return,  f  (u) = 0 for all u. 

Use this to prove that we cannot have serial independence in the longitudinal model, 
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6.  Notes and Comments. 

The material in section 3 is based on Hayne [1974] and Hayne and Marshall [1974] 

This type of model makes it possible to work with a highly disaggregated manpower 

classification scheme and still have some control over the interpretation and mani- 

pulation of the model. 

The semi-Markov model of section 4 is new.  The reader may consult Ross [1970], 

and references cited there, for a decription of semi-Markov models.  Austin [1971] 

and Bartholomew [1973] discuss semi-Markov models.  The treatment in section 4 is 

quite different.  We stress approximations that can be obtained from the transition 

probabilities, and the iirr.t two moments of the length of a visit. 

Section 5 is based on Marshall [1973].  It reveals the underlying structure 

of the longitudinal models and reinforces the theoretical notions derived in section 

10 of chapter III, 
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